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Abstract

We present ~aIYcomputallc bounds on tho extreme generalized cigenvalues of I leriitilan pencils

(?..?,)with finite cigenvalues, and positivec definite R?, matrices. *Ihei proposed hounds are

derived in terms of the generalized cigenvalues of thc subpcncil of maximum d'imenision (R),,13,.)

contined in (RI, Pl, ).

Known r,-ult s based (in the generalizat ioi of the (iershgorin theorem and norm ilcqualit ies are

preseteut and compared to the proposed bounds. It is shown that the new hounds compare

favorably wkith these knc( wn results; the\- are easier to corrpute, require less res;trictions on the

properties of the pcilIS St udied, and they- are in an awerage setise tightl-r than those obtained wsith

the norm inequality, bounds.
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1.0 Introduction

The lermitian (regular or generalized) cigenproblem occurs in a variety of applications in signal

processing. It is commonly encountered in array processing [1,2,3], in spectral estimation [4],

filtering [5], and other areas. Different hounds for the extreme eigenvalues of the regular I lermitian

problems have been presented in the literature [6.7]. Some of them have then been extended to

tbc generalized 1 lernitian eigcnproblcm by either backtransforming the gc"cralizcd problem into

the corresponding eigenproblem, or by generalizing the results originally derived for the regular

eigenproblem [,-]. Classical bounds derived using norm inequalities can he extended to the

generalized positive definite eigenproblem lb backtransforming the pencil (RBA) into a regular

problem ((C * 1) where B ('CC. Ilowxever, such a transformation requires the ('holcski

decomposition of I. The generalization of the Gershgorin theorem propose(] by Stewart [8] does

not have such a restriction, but the lightness of the bounds depends strongly on the characteristics

of the pencils under study.

Slere we present new bounds for the extremc generalized cigenvalues based on an order-rectrsive

eigenproblem decomposition. This work can be considered as an extension of the ideas of Slepian

et al [9] and Dembo [10] who considered the regular cigenproblem. The original idea behind the

following work is connected to the derivation of the order-recursive RIl] [11] and ('-RrIlI [12]

algorithms. These algorithms take advantage of the interlacing property [6]:

) ,n±
+

1 -)In ( )2,n+1 -  
44 n- II

where , is associated with the (n + 1) dimensional pencil (R,,,, B.,,) and ),., is associated with

the n-dimensional subpencil (R,, B) contained in (RI,,, f,,). This property allows us to define

intervals in which );2,, ... 21,. may be found via iterative search techniques [12.13]. 1 lowever,

the interlacing properly does not provide an upper bound on the largest generalized cigenvaluc or

a lower bound on the smallest generalized cigenvalue. 'he proposed bounds on the extreme

Introduction 2



eigenvalucs take advantage of the information available at the previouis order (assumned to he

known), and arc easy to compute.

Introductionl 3



2.0 Derivation of the new bounds

I Ct (R,;, I?,.,) be a (n 4 1 )-dinicnslOnal I Icrinit iall peheil With finlite cleignv'.ihiics I ct uis assume

that the generalized eigenvalues of (/?. ,,) are known. The eigenx'aliies 2 assoc'itd wi1h the pencil

satisfy the relation:

det(R,,+l - )1B,+ 1) = 0(I

which can be expressed as:

det(' 0 1N r 2b 0 (2)

Therefore, uii-ng [6] the determninant of the extended pencil (Pi R_ , ) ma' be cxr rcowCd as'

DUI = (IO, -. l)r - 21 ) - (s -- ) j*(A, - /)'(s - ;) 1

= det [JR, - ) 8B]dctl rf) - ; 1)- (.s - q)*(A,7 - 2.1)- (s -- 1

with v I, and q =(UV, %viirc I [u,.. z4,] is the 13-ort lonorrnl,d(( cigefl cot n1 i~l I ux

associated \\ith (1R_, /?,,). The ecrivahic sear(ch function ho ) is dehoed as:

1(;) = 1)1 14

I:xpandling (4) leadls to:

with fl, (s, )-27,), where u = r and q, = uh. The zeros of (5) are the gecraliied cigenivalucs

of the increased Order pencil (R,,, The~).1 function /i( 2) Is monotone (lecreasing betweent its

poles, asshown in Appendix A. Note tiat sirmilarlvy to thereua gcpohn-[1,4]h)fil

to ha ~c (ti 4 1) real roots only when it has less than n (list inct poles . Hili happenis when

IR,.,,. fl,.) ha's multiple cigenlvaltics. or when rA =q - 0I for some A1. Slepian c.i al [ 6] Indicated t hat

1)crivation of the new houndls 4



three posble sitluatioli related to the n11iiltiple eigenvali ease canl occiii For thec rtLIVillt;

cieproblern . Ihsv conimnrt s ca i be ext ended to thec genera li/ed pro lem. I ct .. hc anl

eigensalueIL of (R', B-) w ith roirtiphicin V It ( , q - (I) for p) --- M.0 .. . all M I. is rit aI root)

of h(;). theni Is isn en genvallne of' niliplicit A, for the (in 4 1 ) dinierisna;l Pencil. If

(op, tqr) (t)for p - mo. .,17 4 A. and / ,_ *, i a root of /0), I then ;" .. i anl eigeiialiie of ml i plicitY

k -4 I for the (n i- 1) dimensional penlcil I mall\ f ( o,, q,) i (OM fo, sonc p Michre:

m0< p m Ki04 A- thwn ilk-I for (R,,.1,,1?,,.,i

Ih 17cIdea n''w is to find( a lowecr houind onl an a igher h1011nd On ,;ilxi?;tn

the rational portionl of the eiWccnsaln search hurnktiorn. Ilo that end c riot( that

and

k-i

'Ihis fromT 1u~ \xe V ct

h(/') K /1i 1lit (I) - ;4 -1) ) for (Ap .c'(1)

As shown inl Appendix A, the funclion h,,()is monotone deereasing in ( .arid /,,(

Isl mnonotonie decreasing in .. c-). Ihur,, I)) has a root ), in the iterval (- ,)such

that < ;., - ,as illunstrated in I igunre I . Similarly, h,, ) has a root A ,,,, ITT t hit interal

ti,.&-)sch thfat T ,. , he ri ot A,,, and ),, can easily be comnpu ted bN solvsing for thec

roots of the second order polynomials:

/In(;) 0 ' 0 b/o)(~ ~ q

;?(i, - lq 2)4 2)'2rcal(s q) --- ( - ? q) -4 rolj 2

IDcr'Isatioii(of the new bounds



for ) ,I - or q

Noic thkil fo~r dlw rcguhrlrrc cti pro b11r ' irI -I() co

Mitch P, th ;mw cxprcssIor an ic h ofne obtaited b% Sleptl cl a!~ [Q] and h\ DI.-nho f]

De)rivastion ff the. ne \ bound'.



3.0 Comparisons with known bounds

I hP, scut on fil r cvic%\Y 1\Vo I \ pc of klo\n bI ounids oil thle CtCf !euai/lCILT\ali' ot

rpreclk anrd next prcwsenB some e, co ripan';, of the proposed hounds \\11 itho J;,shl rsl~hi

('lflnormin I(laliie.

The generalijed (ershgorin theorem

Stessii- I-,] { \ ensd ,i generahi/ation of the( (picistiL'orin tileorern and dhoscd that 11we~~tlI/'

eCT\ idiw.' of RNv- /I. lie ill the, uin of lte ritighhorhootls (;, deflTle(. ;V,

%% her

h, ti x ), fI

-yIl know hound,; h



Several comment- can be made here:

1. A tighter bound may be obtained by replacing in p, norm I with norm 2. as shown in

Appendix B.

2. A finite value for p, is obtaincd only when (r',,, b',,) = (0,0), or when (r,,, I,,) = (0,0). Note that

(r',, b',,) *- (0,0), requires that at least one of the matrices of the pencil (R,11) to be diagonally

dominant' . Thus, p, may be infinite when at least one of the matrices of the pencil studied

(R,/) is not diagonally dominant and no restrictions on the diagonal elements of the pencil are

made. This indicates that the bounds obtained via the Gcneralized Gershgorin ((i.) theorem

are not insured to be finite in all situations where the pencil has finite cigenvalues.

3. The chordal distance X0., 2') has a maximum value of I [16]. Thu, , a finite (iershgorin

neighborhood is obtained only when p, < 1. The value of the parameter p, defined in (10)

depends on the pencil (R1,1), it can have values larger than I even when the pencil cigenvalues

are finite. In such a case, the regions (, containing the eigenvalues cover the whole space, and

no new information is gained by applying the (i,(;. theorem.

The above comments indicate that, when dealing with pencils with finite cigenvalues, additional

information can be gained from the G. Gi. only when p, < I for all i. This furlier restricts the

usefulness of the (i.(. theorem. By comparison, the proposed bounds are limited only to

I lermitian pencils (R,B) with positive definite I1 matrices. lurthermorc, the bounds are insured to

be finite \when the origin.i' pencil has finite cigenvalues to start with. Therefore, the (i.. bounds

will not be used in the following statistical comparisons because they require too many restrictions

on the pencils studied in order to bring additional information.

Norm Inequality bounds

Bounds on the extreme cigenvalues of thc regular cigenproblem Ax = Ax based on norm

inequalities have been proposed [6,7]. Recall that for such bounds, we have:

I lie malrix R is diagonally donimant if I r,, I > I r,, I for all i.

Comparisons with known bounds 8



l (12)

.In l 1(/ n -+ I) IIA - I.

The above inequalities can be extended to the generalized eigenproblem by backtransforming the

pencil (R ") into (C IRC ,I) when IB = C(' is positive definite. It was not possible to perform an

analytical comparison of the new bounds with the norm inequality bounds. As a result, the

behavior of the bounds was studied statisticallh using simulations.

The errors between computed bounds and the true cigenvalue are defined as:

) 1 -- ) min I ,n+ I norm,.!
crrrn.,,+n - e-r,,,

- max )
n+l ,n+ l ") n i - n+ l,n+ I

errmaxs, - n erra - in+i (13

2nrm -2 nl~-

errna. 1 --

where ) ,, and 2 ... are the eigenvalue bounds proposed using the order-recursive technique.

2 and. are the upper bounds respectively obtained using norm F and norm 1, as defined

in '12) . ,, is the lower bound obtained using n(.)'m infinity, as defined in (12).

We considered pencils in whi,'h the elements arc randomly generated fr'om a uniform distribution.

Note that bounds derived using matrix norm inequalities are only valid with positive definite

pencils. Thus, in order to compare the proposed bounds with the matrix norm inequalities bounds,

the cigenvalues of (R,1) are shifted to insure that the pencils under study are positive definite. Table

I presents the means and standard deviations obtained for the error measures defined in (13). 3000

randomly generated positive definite pencils were used to generate the results in each case. This

table shows that the proposed bounds are tighter than the norm inequality bounds in an average

sense only. i.e., the relative tightness of the bounds around the true eigenvalue depends upon the

pencil under consideration much more than the norm inequality based norms. Furthermore, the

results indicate that the larger the cigenvalues are, the better the performance of the proposed ),,,n

Comparisons with known bounds Q



is. Note that )_, is not bounded by 0, as is ,. ,,r and can he negalive. "Therefore, lh1 likelihood

of )r, < 0 increases when the true cigenvalues arC close to 0 to start with.

Table 1. Bound error measures

average min & errmi1 n errn,, errm,, Cfrnm,, tr -

max eigcnv, mean (standard deviation)

28.677 0.5381 0.7089 0.2813 0.3282 0.5016
3079 (2.1267) (0.0225) (0.4057) (0.1194) (0.3109)

219 0.5730 0.7913 0.4356 0.5005 0.5730
i0978 (1.4311) (0.0156) (0.6020) (0.1383) (0.3724)

8407 0.1631 0.7884 0.4356 0.4771 0.6485
3.61 W (0.0771) (0.0166) (0.6450) (0.1486) (0.4410O)

Comparisons with known bounds I0



ho.(): - - - -

Figure 1. Eigcnvalue search function IiQA), and bound search functions h (A), and h..(A)

Comparisons with known bounds 1



a

0 AA

X(;, ')d(a,b)

Figure 2. Definition of the Chordal distance: from Parlett [15]

Comparisons with known bounds 12



4.0 Conclusions

This report presents new bounds on the extreme cigcnvalues of lermitian pcncils (RB) with finite

eigenvalues, when B is positive definite. The bounds arc based on an order-recursivc

eigendecomposition of the pencil. Simulations indicate that the proposed bounds depend more

strongly on the pencil considered than those derived using norm inequalities. flowevcr, they are

not as restricted and are easy to compute.

Acknowledgments
The author wishes to acknowledge the contribution of Dr. C.A. Beattie, of the Virginia Polytechnic

Institute and State University, in the enclosed derivation of the proof of the monotone behavior

of the generalized cigenvalue search function, and to thank him for numerous discussions on the

generalized eigenproblem.

Conclusions 13



References
[I]: R.O. Schmidt, "A Signal Subspace Approach to Multiple Emitter Location and

Spectral Estimation," P110). D)issertation, Stanford University, Stanford. (A Nov.

[2]: R. Roy, A. Paulraj, and T1. Kailath, "FSPRIT - A Subspace Rotation Approach to
Estimation of Parameters of Cisoids in Noise," IEE7 T'rans. Acoust., Speech, Signal
Processing. Vol. ASSP-34, No. 5, Oct. 1986, pp. 1340-1342.

[3]: R. Roy andT'. Kailath, -'otal least-Squares FESPRIT", Proc. 211" Asilomar Conference
on Signal-, Circuits, and Systems, Patcific Grove, CA, Nov. 2-4, 1987.

[4]: S.]'. Kay, Modern 'Vpcoral Estimation, Pronticc I Tall, 1988.

[1: S. Ilaykin, Modern Filters, MacMillan, 198().

[6]: E.R. (Thntmacher, 7/ic Theori' of Matrices, Chelsea Publishing C'ompany, New 'York,
NY, 1Q74.

[7]: C. Giolub and C. Van Loan, Mfatrix (?ompulahions, John Hopkins Univ. Press, 1983.

[8]: (iW. Stewart, "Gershigorin Theory for the Generalized FLigenvaluc Problem,"
Mathematics of Comput., Vol. 29, No. 130, April 1975, pp. 600-606.

[9]: 1). Slepian and ILI. Landau, "A Note on the Figenvalues of Hlermitian Matrices,"
SIAM .1. Math. Anal., Vol. 9, No. 2, April 1978, pp. 291-297.

[10]: A. Dembo, "Bounds on the Extreme Figenvalues of Positive-TDefinite 'Ioeplitz
Matrices," JEFFE Trans. on Inf. T1h., Vol. 34, No. 2, March 1988, pp. 352-355.

[11]: A.A. Beex and M.P. Fargues, "East Recursive/ Iterative Tloeplitz Eigenspace
D~ecomposition," 11E1E1 TIrans. on ASSP, Vol. 37, No. 11, Nov. 1Q89, pp. 1765-1768.

[12]: M.P. I-argues and A.A. Beex, "East Order-Recursive (Generalized Hermitian 'Ioephtz
Li1genspace D)ecomposition," Math. Control, Signals, and System-,, Vol.4. Nov. 90.

[13]: M.P. Fargues, "Fast Order- Recursive Hlermitian Toeplitz Eigenspace 'Techniques for
Array Processing," Ph.). Dissertation, VPI&SU., Blacksburg, VA, 1988.

[14]: .1.11. Wilkinson, The Algebraic QFieeiwalue Problem., Oxford IUniiversity Press, 1Q65.

[15]: 1. N. Parlett, The S inetric Eigens-ale Problemn, Prentice-I lall Series in Computational
Mathematics, 1980.

[16]: G. CG. Sansone and .1. (ierretsen, Lectures on lte Thieory of Functions o fa Complex-
Variable, /: Holotnorp~hic Functlions, P1. Noordhoff - Groningen, I hi., 1960.

References 14



Appendix A. Monotone behavior of the eigenvalue

search function, and the bound search functions

This appendix shows that the generalized eigenvalue search function ho), and the bound search

functions h,(Q), and hnna()) are monotone decreasing between their poles.

Proof:

Recall frmi (5) that the eigenvalhe search funclion is defined as:

n Ik -)qk1
hob,- (Al )

k=1

Consider the following matrix equation:

Lo b- s* - q*j~ll C2
;q A -AlxjL j (A.2)

with A = diag(o._ .... ,),). Solving equation (A.2) for C leads to:

[r() = - ).b0 - (s - ).q)(A - 2 )- ).q)]- (A.3)

= [h(,)] - '

CO) may be rewritten as:

C(A) = e - ) 1 e (A.4)

with

Appcndix A. Monotone behavior of the eigcnvaluc search function, and the bound search
functions 15



R = ro S B 1[ ,0  .... 0] ,

so that from (A.4) we get:

C(;.) R B BlJiR B (A. 5)

Using (A.3) and (A.5), h'(2) becomes:

d F[_ 1 -C(2
-,'.) = d) ((2 (A.6)

l'herefore h(.) is monotone decreasing between its poles.

Next, note that h,,,() and h,,,(A) are functions similar to h(;) in which A has been respectively

replaced with diag(.,.. ,,) and diag(;, T...., Thus, k,,,.) and h,,,(2.) are monotone

decreasing between their respective multiple poles ,., and

Appendix A. Monotone behavior of the eigenvaluc search function, and the bound sear-h
functions 16



Appendix B. Generalized Gershgorin bounds

This appendix first reviews the generalized (iershigorin neighborhoods proposed earlier by Stewart

[8]. Next, it show.s that further tightness of the cigenvaluc bounds may be obtained by replacing

the norm I measure used by Stewart with the norm 2 measure.

Generalized eigenvatues and the Chordal distance

Some insight into the properties of the pencil (I?,!) can be gained by looking at the (eneralized

Schur (6.S.) decomposition 1'7]. Recall that the (iS, decomposition leads, to the following result:

. heioremn: If R and R? are in C"', then there exists unitary Q and Z such that QJ1 = F and

QT =' are upper triangular. If for some k, 1,, and s, are both zero, then ).(R?,3) -C. Otherwise,

,(R,fl) = I i1su Is11 9 01 (13.1)

L- quition (13.1) shows that 2(R,fl) may be very sensitive to small changes if .,, Is small. I owever,

Stewart [7] noted that the reciprocal sji,, may be a well behaved (i.e., not sensilive to small :.hanges

of its parameters) cigenvalue of the pencil (fiR), and pointed out that it may he better to treat the

cigenvalues as pairs (1i,s v,) than as quotients. As a consequence, Stewart [8] idenltified the

cigenvalues t /s of pencils wvith the point in the projective complex line dlefined as:

[i,'T] =(~s * (0,0) : 1/S = )

T1he Chordal metric' X is used to measure the eigenvalue separation. It is expressed as:

x('], s' ~£A Ist' -S'iI____ (32

2 TIhis mctnic results from the introduction of lte extended complex plane (complex plane + infinity) in
complex analysis [ 16]. 'The Ricmann sphecre is chosen to representlthe extended complex pl ine which is
not easy'% to ViSUalize directly. The correspondence between the two geometric representations is tlien set
uip With lte aid of' a stereographic projection [ 16].

Appendix 13. Gieneralized Ciershgoritt bounds 17



For / = t and 2' = it' the chordal distance can be expressed as:

I, 2- 2.'I (13.3)

V/I±+2 1± +).2

The distance x()., ') is the length of the chord joining a and b, as shown in [igure 2.

Some useful properties of the Chordal metric [ 16]

I. The chordal metric is invariant under reciprocation; i.e., X(2 ,.') = x(1/),, I/).')

2. The chordal metric is bounded; i.e., 0 < X( ., )) !5 I.

3. X(), )-2) 0 x(1, -) + X(-3 )-2)-

4. X(). )') y()', 2).

Generalized Gershgorin bounds

Stewarl [, lb. 2.1] showed that the generalized eigenvalues 2 of the pencil (R/1) lie in the union

of the regions (, defined by:

c [ + .,xr , h + 1IxI1,- l} (i= 1. n) (1.4)

where , = 0; r, ,r,, (b,., .. , b, h,,1, .,,), and .i is formed from the

eigenvalue x by deleting its i'" component.

The sets Q are not casy to work with. Thus, they are replaced with the following neighborhoods

defined in terms of the chordal metric x. This leads to:

* *

X([ri, bh1],[r1
- + '4i, bi 4- )= I - I 1 (1 54rii + +.' I +bii + f

Next, the sets G, are defined as follows:

Gi = (2: x(rihlbil, 2) Pi} (B.6)

Appendix B. (eneralized Gershgorin bounds I R



where p, is an upper bound on the chordal dislance defined in ( T.). These regions ( contain the

eigenvalues of the pencil (RJ); they are called the (yershgorin regions. Stewart [R] shOwCd that the

bound p, introduced in (B.6) can be defined b,,:

P1i- 3i~ ll({7)

ir -jii 1 h ij , r' 1e 4- 2'

where

r'i=max{0. ill - iIl;l}

Modified (yershgorin hounds

A bound . on 11C chordal diliancc tighcr than the one proposed b\ ste;Irt skith (B.7 cai be

derived b% tsiriO the fbllowing vector norm iucqiialit\:

11-I, < I i P

I sing (B3. ) in (l3.5) leads to:

and

Irii , B. WI )

Note that

Thus, (B. ), (B.9), (B.10), and (1.11) lead to:

A Ilri,/?1  - /'f'l1

A e(riibHi. ) --Yi r Pd < Pi (rh3.u12)
I 11 + lb ii .2 1i ir ' 4 1 bi Il

Appendix B. (Gencrallzed (Gcrshgorin bound,;I
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